We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line, with the 2-Wasserstein metric. We focus in particular on Principal Component Analysis (PCA) and regression. To define these models, we exploit a representation of the Wasserstein space closely related to its weak Riemannian structure, by mapping the data to a suitable linear space and using a metric projection operator to constrain the results in the Wasserstein space. By carefully choosing the tangent point, we are able to derive fast empirical methods, exploiting a constrained B-spline approximation. As a byproduct of our approach, we are also able to derive faster routines for previous work on PCA for distributions. By means of simulation studies, we compare our approaches to previously proposed methods, showing that our projected PCA has similar performance for a fraction of the computational cost and that the projected regression is extremely flexible even under misspecification. Several theoretical properties of the models are investigated and asymptotic consistency is proven. Two real world applications to Covid-19 mortality in the US and wind speed forecasting are discussed.
翻译:我们提出了一套新的预测方法,用2-Wasserstein衡量标准,对真实线上概率分布的数据集进行统计分析。我们特别侧重于主元分析(PCA)和回归。为了定义这些模型,我们利用瓦塞尔斯坦空间与其薄弱的里曼尼结构密切相关的表示方式,将数据映射到合适的线性空间,并使用一个衡量预测操作器限制瓦西尔斯坦空间的结果。通过仔细选择切点,我们能够获得快速的经验方法,利用有限的B-spline近似值。作为我们方法的副产品,我们还能够为以前在五氯苯甲醚上的工作获得更快的例行程序,以供分发。我们通过模拟研究,将我们的方法与先前提议的方法进行比较,表明我们的预测五氯苯甲醚在计算成本的一小部分方面有相似的性能,而且预测的回归即使在具体错误的情况下也非常灵活。对模型的一些理论特性进行了调查,并证明这些模型的一贯性得到了证明。两个真实的世界应用于美国Covid-19死亡率和风速预报。