For a hypersurface in ${\mathbb R}^3$, Willmore flow is defined as the $L^2$--gradient flow of the classical Willmore energy: the integral of the squared mean curvature. This geometric evolution law is of interest in differential geometry, image reconstruction and mathematical biology. In this paper, we propose novel numerical approximations for the Willmore flow of axisymmetric hypersurfaces. For the semidiscrete continuous-in-time variants we prove a stability result. We consider both closed surfaces, and surfaces with a boundary. In the latter case, we carefully derive weak formulations of suitable boundary conditions. Furthermore, we consider many generalizations of the classical Willmore energy, particularly those that play a role in the study of biomembranes. In the generalized models we include spontaneous curvature and area difference elasticity (ADE) effects, Gaussian curvature and line energy contributions. Several numerical experiments demonstrate the efficiency and robustness of our developed numerical methods.
翻译:对于高地表面, 以$mathbb R ⁇ 3美元计算, Willmore 流被定义为古典Willmore 能量的低位流: 平方平均曲度的有机体。 这种几何进化法对不同的几何学、 图像重建和数学生物学感兴趣。 在本文中, 我们建议对 Willmore 轴心高地表流的新数字近似值。 对于半分立连续时变体, 我们证明我们是一个稳定的结果。 我们认为封闭的表面和有边界的表面都是稳定的结果。 在后一种情况下, 我们仔细地得出适当的边界条件的微弱配方。 此外, 我们考虑对古典Willmore 能量的许多概括化, 特别是在生物成形研究中发挥作用的能源。 在通用模型中, 我们包含自发的曲线和地区差异弹性效应, 高斯 曲调和线能量贡献。 一些数字实验显示了我们开发的数字方法的效率和坚固性。