We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in $\mathbb{R}^d$, with $d\ge 3$, are $\mathrm{NP}$-hardness and an $O(\log^3 n)$-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in $\mathbb{R}^d$ is APX-hard for any $d\ge 3$. More generally, this implies that TSP with $k$-dimensional flats does not admit a PTAS for any $1\le k \leq d-2$ unless $\mathrm{P}=\mathrm{NP}$, which gives a complete classification of the approximability of these problems, as there are known PTASes for $k=0$ (i.e., points) and $k=d-1$ (hyperplanes). We are able to give a stronger inapproximability factor for $d=O(\log n)$ by showing that TSP with lines does not admit a $(2-\epsilon)$-approximation in $d$ dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an $O(\log^2 n)$-approximation algorithm for the problem, albeit with a running time of $n^{O(\log\log n)}$.


翻译:我们研究Euclidean 旅行销售员问题的变量, 而不是一组点数, 我们得到了一组线条作为输入, 目标是找到访问每条线的最短的行程。 以$mathbb{ R ⁇ d$, 以$d\ge$ 3美元, 最知名的上下界限是$\ mathrm{NP} 硬度和 $O( log} 3 n) 和 $( log_ 3 n) 的配角算法。 我们显示, 以$mthb{R\\ d$为直线的 TSP 以美元为单位的 APX- hard 访问每条线。 更一般地说, 以美元为单位的平面平面平面平面平面平面平面平面的 TSP, 除非$\\ kleqrum{P} palgrum} 和正面平面平面平面平面平面平面的平面, 显示的是 $xxxxx 。 (i. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员