The goal of the \emph{alignment problem} is to align a (given) point cloud $P = \{p_1,\cdots,p_n\}$ to another (observed) point cloud $Q = \{q_1,\cdots,q_n\}$. That is, to compute a rotation matrix $R \in \mathbb{R}^{3 \times 3}$ and a translation vector $t \in \mathbb{R}^{3}$ that minimize the sum of paired distances $\sum_{i=1}^n D(Rp_i-t,q_i)$ for some distance function $D$. A harder version is the \emph{registration problem}, where the correspondence is unknown, and the minimum is also over all possible correspondence functions from $P$ to $Q$. Heuristics such as the Iterative Closest Point (ICP) algorithm and its variants were suggested for these problems, but none yield a provable non-trivial approximation for the global optimum. We prove that there \emph{always} exists a "witness" set of $3$ pairs in $P \times Q$ that, via novel alignment algorithm, defines a constant factor approximation (in the worst case) to this global optimum. We then provide algorithms that recover this witness set and yield the first provable constant factor approximation for the: (i) alignment problem in $O(n)$ expected time, and (ii) registration problem in polynomial time. Such small witness sets exist for many variants including points in $d$-dimensional space, outlier-resistant cost functions, and different correspondence types. Extensive experimental results on real and synthetic datasets show that our approximation constants are, in practice, close to $1$, and up to x$10$ times smaller than state-of-the-art algorithms.


翻译:\ emph{ qdots,q_ n $ 。 也就是说, 要计算一个旋转矩阵 $R\ in\ mathbb{R3\ time3} 和一个更小的矢量 $t\ in\ mathbb{R3}, 和一个更小的矢量 $t $t\ in\ mathbb{R3} 美元, 将一个对齐的距离 $P = $ p_ 美元,\\ cdddots, p_ 美元, p_ 美元=美元, p_n_ 美元, p_ 美元 美元 美元, p_ 美元, p_ 美元, p_ 美元 美元, 美元, 另一种( 美元) 某些距离函数 QQQQ =q Qq_ Qq_, Qemph{ 注册问题 。 最硬的版本是,, 可能的所有通信功能都从 $P$ 到 $Q. 。 。 。 高端点算出我们 最接近的 最接近的算算算算 和变数, 最接近最接近的算法 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员