Multidimensional packing problems generalize the classical packing problems such as Bin Packing, Multiprocessor Scheduling by allowing the jobs to be $d$-dimensional vectors. While the approximability of the scalar problems is well understood, there has been a significant gap between the approximation algorithms and the hardness results for the multidimensional variants. In this paper, we close this gap by giving almost tight hardness results for these problems. 1. We show that Vector Bin Packing has no polynomial time $\Omega( \log d)$ factor asymptotic approximation algorithm when $d$ is a large constant, assuming $\textsf{P}\neq \textsf{NP}$. This matches the $\ln d + O(1)$ factor approximation algorithms (Chekuri, Khanna SICOMP 2004, Bansal, Caprara, Sviridenko SICOMP 2009, Bansal, Eli\'{a}s, Khan SODA 2016) upto constants. 2. We show that Vector Scheduling has no polynomial time algorithm with an approximation ratio of $\Omega\left( (\log d)^{1-\epsilon}\right)$ when $d$ is part of the input, assuming $\textsf{NP}\nsubseteq \textsf{ZPTIME}\left( n^{(\log n)^{O(1)}}\right)$. This almost matches the $O\left( \frac{\log d}{\log \log d}\right)$ factor algorithms(Harris, Srinivasan JACM 2019, Im, Kell, Kulkarni, Panigrahi SICOMP 2019). We also show that the problem is NP-hard to approximate within $(\log \log d)^{\omega(1)}$. 3. We show that Vector Bin Covering is NP-hard to approximate within $\Omega\left( \frac{\log d}{\log \log d}\right)$ when $d$ is part of the input, almost matching the $O(\log d)$ factor algorithm (Alon et al., Algorithmica 1998). Previously, no hardness results that grow with $d$ were known for Vector Scheduling and Vector Bin Covering when $d$ is part of the input and for Vector Bin Packing when $d$ is a fixed constant.
翻译:平面包装问题一般化了典型的包装问题, 如 Bin 包装、 多处理器、 允许工作以美元为单位, 包括允许工作以美元为单位, 以美元为单位; 虽然对卡路里问题的相近性理解, 但对于多维变量来说, 近似算法和硬性结果之间存在巨大差距。 在本文中, 我们通过给这些问题提供几乎紧凑的硬性结果来缩小这一差距。 1. 我们显示 Vector Bin包装没有多盘时间 $( Omega (\log d), 当$是大型恒定时, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位。