Goodness-of-fit (GoF) testing is ubiquitous in statistics, with direct ties to model selection, confidence interval construction, conditional independence testing, and multiple testing, just to name a few applications. While testing the GoF of a simple (point) null hypothesis provides an analyst great flexibility in the choice of test statistic while still ensuring validity, most GoF tests for composite null hypotheses are far more constrained, as the test statistic must have a tractable distribution over the entire null model space. A notable exception is co-sufficient sampling (CSS): resampling the data conditional on a sufficient statistic for the null model guarantees valid GoF testing using any test statistic the analyst chooses. But CSS testing requires the null model to have a compact (in an information-theoretic sense) sufficient statistic, which only holds for a very limited class of models; even for a null model as simple as logistic regression, CSS testing is powerless. In this paper, we leverage the concept of approximate sufficiency to generalize CSS testing to essentially any parametric model with an asymptotically-efficient estimator; we call our extension "approximate CSS" (aCSS) testing. We quantify the finite-sample Type I error inflation of aCSS testing and show that it is vanishing under standard maximum likelihood asymptotics, for any choice of test statistic. We apply our proposed procedure both theoretically and in simulation to a number of models of interest to demonstrate its finite-sample Type I error and power.


翻译:适用性( GOF) 测试在统计上是无处不在的, 与模型选择、 信任间隔构建、 有条件的独立测试和多重测试直接相关, 仅列出几个应用程序。 测试一个简单( 点) 无假的 GOF 在选择测试统计时提供了分析者极大的灵活性, 但仍能确保有效性, 大部分关于复合无损假设的 GOF 测试都受到更大的限制, 因为测试统计数据必须在整个无模型空间上有一个可移动的分布。 一个显著的例外是共同满足抽样( CSS ) : 重新标注数据, 条件是使用任何测试性统计分析师选择的完全模型保证有效的 GOF 测试。 但是 CSS 测试要求空模型有一个契约( 信息理论意义上的) 充分的统计, 这只能维持一个非常有限的模型; 即使是像物流回归一样简单一样的无效模型, CSS 测试也无能为力。 在本文中, 我们利用大致充足性CSS 测试概念, 将任何模拟性能力测试的参数模型基本地展示任何匹配性模型。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
4+阅读 · 2018年11月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
0+阅读 · 2021年3月7日
Loss Estimators Improve Model Generalization
Arxiv
0+阅读 · 2021年3月5日
Arxiv
0+阅读 · 2021年3月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
4+阅读 · 2018年11月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员