Underwater manipulation with free-floating autonomous underwater vehicles (AUVs) is an under-explored research area that this paper addresses. The open-source mechanical, electrical, and software designs of an AUV and continuum manipulator system are provided as a platform for performing this research. The underwater robot system has high degrees of freedom including the vehicle body motion and the manipulator joints. Therefore, when performing a manipulation task, the robot has many different potential trajectories which satisfy the task constraints, and this kinematic redundancy needs to be resolved. This paper provides a method for solving the redundancy problem. The relevant kinematic models are derived in order to build an algorithm to calculate desired joint velocities in real time. Different methods to optimize the algorithm for specific tasks are proposed, including a basic weighting method and a gradient projection method to optimize a user-defined objective function. Both simulation and experimental results are analyzed to assess the performance of this algorithm.


翻译:使用自由漂浮的自主水下飞行器(AUVs)的水下操纵是本文所处理的探索不足的研究领域。 AUV和连续操纵系统的开放源码机械、电气和软件设计作为进行此项研究的平台。水下机器人系统有高度的自由度,包括车辆机体运动和操控连接。因此,在进行操纵任务时,机器人有多种满足任务限制的潜在轨迹,这种运动冗余需要解决。本文为解决冗余问题提供了一种方法。相关的动能模型是用来建立算法的,以便实时计算所需的联合速度。提出了优化具体任务算法的不同方法,包括基本加权法和优化用户定义目标功能的梯度投影法。对模拟和实验结果进行了分析,以评估这一算法的性能。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
11+阅读 · 2021年2月17日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员