Weak supervision (WS) is a powerful method to build labeled datasets for training supervised models in the face of little-to-no labeled data. It replaces hand-labeling data with aggregating multiple noisy-but-cheap label estimates expressed by labeling functions (LFs). While it has been used successfully in many domains, weak supervision's application scope is limited by the difficulty of constructing labeling functions for domains with complex or high-dimensional features. To address this, a handful of methods have proposed automating the LF design process using a small set of ground truth labels. In this work, we introduce AutoWS-Bench-101: a framework for evaluating automated WS (AutoWS) techniques in challenging WS settings -- a set of diverse application domains on which it has been previously difficult or impossible to apply traditional WS techniques. While AutoWS is a promising direction toward expanding the application-scope of WS, the emergence of powerful methods such as zero-shot foundation models reveals the need to understand how AutoWS techniques compare or cooperate with modern zero-shot or few-shot learners. This informs the central question of AutoWS-Bench-101: given an initial set of 100 labels for each task, we ask whether a practitioner should use an AutoWS method to generate additional labels or use some simpler baseline, such as zero-shot predictions from a foundation model or supervised learning. We observe that in many settings, it is necessary for AutoWS methods to incorporate signal from foundation models if they are to outperform simple few-shot baselines, and AutoWS-Bench-101 promotes future research in this direction. We conclude with a thorough ablation study of AutoWS methods.
翻译:微弱监管 (WS) 是一种强大的方法, 用来在面临低到无标签的标签数据的情况下对受监督模型进行培训。 它用标签功能( LF) 表达的多重噪音和便宜标签估计来取代手贴标签数据。 虽然它在许多领域被成功使用, 薄弱的监督应用范围却由于难以为具有复杂或高维特征的领域构建标签功能而受到限制。 为了解决这个问题, 少数方法提议使用少量的地面真相标签来自动调整LF 101 设计进程。 在这项工作中, 我们引入了AutoWS- Bench- 101: 一个用于在挑战性的WS设置中评估自动自定义(AutoWS)技术(AutoWS) (AutoWS) (AutoWS) 技术(AutoWS) 10: 一组不同的应用领域过去很难或不可能应用传统的WSWS技术。 虽然AWA是扩大WS应用范围, 但是, 强大的方法的出现表明他们需要理解AutoWS技术如何与现代零光或少得手的学习者进行对比。 。 这让AAAWS- Besh- besh- scar- hust- hust- 10 基础的中央问题从观察基础, 成为一个更简单的基础, 我们使用一个基础, 一种基础, 一种基础, 一种更简单的任务是使用一个基础, 一种基础, 一种基础。