Bayesian Additive Regression Trees (BART) is a tree-based machine learning method that has been successfully applied to regression and classification problems. BART assumes regularisation priors on a set of trees that work as weak learners and is very flexible for predicting in the presence of non-linearity and high-order interactions. In this paper, we introduce an extension of BART, called Model Trees BART (MOTR-BART), that considers piecewise linear functions at node levels instead of piecewise constants. In MOTR-BART, rather than having a unique value at node level for the prediction, a linear predictor is estimated considering the covariates that have been used as the split variables in the corresponding tree. In our approach, local linearities are captured more efficiently and fewer trees are required to achieve equal or better performance than BART. Via simulation studies and real data applications, we compare MOTR-BART to its main competitors. R code for MOTR-BART implementation is available at https://github.com/ebprado/MOTR-BART.
翻译:Bayesian Additive Redition 树(BART)是一种基于树的机械学习方法,已经成功地应用于回归和分类问题。BART承担了一套作为学习能力薄弱的树木的正规化前科,在非线性和高阶互动的情况下非常灵活地进行预测。在本文中,我们引入了称为模型树BART(MOTR-BART)的BART扩展,该扩展在节点水平上考虑细线函数,而不是小节点常数。在MOTR-BART中,没有在节点一级对预测具有独特的价值,而是估计了线性预测,考虑到在相应树中用作分裂变量的共变数。在我们的做法中,当地线性被捕捉得效率更高,比BART更需要更少的树木来达到相同或更好的性能。Via模拟研究和实际数据应用,我们将MOTR-BART与其主要竞争者进行比较。MTR-BART执行的R代码见https://github.com/ebprado/MOTR-TR-BART。