Many schools in large urban districts have more applicants than seats. Centralized school assignment algorithms ration seats at over-subscribed schools using randomly assigned lottery numbers, non-lottery tie-breakers like test scores, or both. The New York City public high school match illustrates the latter, using test scores and other criteria to rank applicants at ``screened'' schools, combined with lottery tie-breaking at unscreened ``lottery'' schools. We show how to identify causal effects of school attendance in such settings. Our approach generalizes regression discontinuity methods to allow for multiple treatments and multiple running variables, some of which are randomly assigned. The key to this generalization is a local propensity score that quantifies the school assignment probabilities induced by lottery and non-lottery tie-breakers. The local propensity score is applied in an empirical assessment of the predictive value of New York City's school report cards. Schools that receive a high grade indeed improve SAT math scores and increase graduation rates, though by much less than OLS estimates suggest. Selection bias in OLS estimates is egregious for screened schools.


翻译:大型城市地区许多学校的申请人多于座位。 集中的学校派任算法使用随机分配的彩票数、非彩票断领者如考试分数或两者兼而有之,在超额招生学校使用超额分配的配额席位。 纽约市公立高中比对显示后者,使用考试分数和其他标准对“筛选”学校的申请人进行评分,加上未筛选的“彩票”学校的彩票断领带。 我们展示了如何确定在这种环境下上学的因果关系。 我们的方法概括了回归不连续方法,以允许多种治疗和多种运行变数,其中一些是随机分配的。 这种普遍化的关键是当地流行性分数,该分数能量化由彩票和非彩票断领关系引发的学校分配概率。 本地口分数用于对纽约市学校成绩卡的预测值进行实证评估。 获得高年级的学校确实改进了SAT数学分数并增加了毕业率,尽管远低于OSS的估计值。 选择OLS估计数是令人厌恶的。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月2日
Arxiv
0+阅读 · 2021年3月2日
Arxiv
0+阅读 · 2021年3月1日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员