This study develops a non-asymptotic Gaussian approximation theory for distributions of M-estimators, which are defined as maximizers of empirical criterion functions. In existing mathematical statistics literature, numerous studies have focused on approximating the distributions of the M-estimators for statistical inference. In contrast to the existing approaches, which mainly focus on limiting behaviors, this study employs a non-asymptotic approach, establishes abstract Gaussian approximation results for maximizers of empirical criteria, and proposes a Gaussian multiplier bootstrap approximation method. Our developments can be considered as extensions of the seminal works (Chernozhukov, Chetverikov and Kato (2013, 2014, 2015)) on the approximation theory for distributions of suprema of empirical processes toward their maximizers. Through this work, we shed new lights on the statistical theory of M-estimators. Our theory covers not only regular estimators, such as the least absolute deviations, but also some non-regular cases where it is difficult to derive or to approximate numerically the limiting distributions such as non-Donsker classes and cube root estimators.


翻译:本研究为分配M-Servatic Gaussia 开发了一种非非统计性近似理论,该理论被界定为实验性标准功能的最大化。在现有的数学统计文献中,许多研究侧重于统计推算M-Sestimator分布的近似理论。与主要侧重于限制行为的现有方法相比,本研究采用非统计性方法,为经验标准最大化者建立抽象的Gaussia近近近似结果,并提议一种高斯的倍增性靴近近似方法。我们的发展可被视为原始作品(Chernozhukov、Chetverkov和Kato,2013、2014、2015)的扩展,关于将实验性进程最优性分布到其最大化者的近似理论(2013、2014、2015)的扩展。通过这项工作,我们为M-Sestima的统计理论提供了新的亮点。 我们的理论不仅涵盖定期的估测度,例如最不绝对偏差,而且还包括一些非常规案例,难以从数字上推算或近似限制分布(如根-Dor-Donstrastistrastistrators)类等非数字分布。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
12+阅读 · 2018年6月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月1日
Arxiv
0+阅读 · 2021年2月28日
Arxiv
0+阅读 · 2021年2月26日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
12+阅读 · 2018年6月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员