Numerous empirical studies employ regression discontinuity designs with multiple cutoffs and heterogeneous treatments. A common practice is to normalize all the cutoffs to zero and estimate one effect. This procedure identifies the average treatment effect (ATE) on the observed distribution of individuals local to existing cutoffs. However, researchers often want to make inferences on more meaningful ATEs, computed over general counterfactual distributions of individuals, rather than simply the observed distribution of individuals local to existing cutoffs. This paper proposes a consistent and asymptotically normal estimator for such ATEs when heterogeneity follows a non-parametric function of cutoff characteristics in the sharp case. The proposed estimator converges at the minimax optimal rate of root-n for a specific choice of tuning parameters. Identification in the fuzzy case, with multiple cutoffs, is impossible unless heterogeneity follows a finite-dimensional function of cutoff characteristics. Under parametric heterogeneity, this paper proposes an ATE estimator for the fuzzy case that optimally combines observations to maximize its precision.
翻译:许多实证研究采用多重截断和多种不同处理方法的回归不连续设计。通常的做法是将所有截断标准化为零,并估计一个效果。这一程序确定了对观察到的当地个人分布到现有截断的平均处理效果(ATE),然而,研究人员往往希望对更有意义的非重叠计算,根据个人的一般反事实分布进行计算,而不只是根据观察到的当地个人对现有截断的分布进行计算。本文建议,当这种技术在尖锐案例中的截断特性的非参数之后出现异异异异性时,对这种非重叠性进行一致和无常的正常估计。拟议的估计结果集中在最小最佳的根速率上,以便具体选择调整参数。在烟雾中进行识别,要采用多重截断,是不可能的,除非异性遵循临界特征的有限维功能。在对等异性下,本文建议对烟雾性案例采用ATE估算方法,以便最佳地将观测结合起来,使其精确性最大化。