Spatially varying coefficient (SVC) models are a type of regression model for spatial data where covariate effects vary over space. If there are several covariates, a natural question is which covariates have a spatially varying effect and which not. We present a new variable selection approach for Gaussian process-based SVC models. It relies on a penalized maximum likelihood estimation (PMLE) and allows variable selection both with respect to fixed effects and Gaussian process random effects. We validate our approach both in a simulation study as well as a real world data set. Our novel approach shows good selection performance in the simulation study. In the real data application, our proposed PMLE yields sparser SVC models and achieves a smaller information criterion than classical MLE. In a cross-validation applied on the real data, we show that sparser PML estimated SVC models are on par with ML estimated SVC models with respect to predictive performance.


翻译:空间差异系数(SVC)模型是空间数据的一种回归模型,空间数据中共变效应随空间而异。如果有多个共变,自然的问题是共变具有空间差异效应,而不是。我们为基于高斯进程SVC模型提出了一个新的变量选择方法。它依赖于一个受罚的最大可能性估计(PMLE),允许在固定效应和高斯过程随机效应方面进行变量选择。我们在模拟研究和真实的世界数据集中验证了我们的方法。我们的新办法显示模拟研究中的选择性能良好。在实际数据应用中,我们提议的PMLE生成了稀释性SVC模型,并实现了比经典MLE小的信息标准。在对真实数据进行交叉校验时,我们显示,稀疏PML估计的SVC模型与预测性能的ML估计SVC模型是相同的。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《时序数据分析》书稿,512页pdf
专知会员服务
112+阅读 · 2020年12月25日
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
已删除
将门创投
5+阅读 · 2020年3月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月5日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《时序数据分析》书稿,512页pdf
专知会员服务
112+阅读 · 2020年12月25日
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
已删除
将门创投
5+阅读 · 2020年3月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员