Linear arrangements of graphs are a well-known type of graph labeling and are found at the heart of many important computational problems, such as the Minimum Linear Arrangement Problem (minLA). A linear arrangement is usually defined as a permutation of the $n$ vertices of a graph. An intuitive geometric setting is that of vertices lying on consecutive integer positions in the real line, starting at 1; edges are typically drawn as semicircles above the real line. In this paper we study the Maximum Linear Arrangement problem (MaxLA), the maximization variant of minLA and a less studied problem than minLA. We a devise new characterization of maximum arrangements of general graphs, and prove that MaxLA can be solved for cycle graphs in constant time, and for $k$-linear trees ($k\le2$) in time $O(n)$. We present a simple algorithm that solves a constrained variant of MaxLA, which we call bipartite MaxLA, in time $O(n)$. This algorithm has two promising characteristics. First, it solves MaxLA for most trees consisting of a few tenths of nodes. Second, it produces a high quality approximation to MaxLA for trees where the algorithm fails to solve MaxLA. Furthermore, we conjecture this algorithm solves MaxLA for at least $50\%$ of all free trees.
翻译:暂无翻译