In unsupervised domain adaptive (UDA) semantic segmentation, the distillation based methods are currently dominant in performance. However, the distillation technique requires complicate multi-stage process and many training tricks. In this paper, we propose a simple yet effective method that can achieve competitive performance to the advanced distillation methods. Our core idea is to fully explore the target-domain information from the views of boundaries and features. First, we propose a novel mix-up strategy to generate high-quality target-domain boundaries with ground-truth labels. Different from the source-domain boundaries in previous works, we select the high-confidence target-domain areas and then paste them to the source-domain images. Such a strategy can generate the object boundaries in target domain (edge of target-domain object areas) with the correct labels. Consequently, the boundary information of target domain can be effectively captured by learning on the mixed-up samples. Second, we design a multi-level contrastive loss to improve the representation of target-domain data, including pixel-level and prototype-level contrastive learning. By combining two proposed methods, more discriminative features can be extracted and hard object boundaries can be better addressed for the target domain. The experimental results on two commonly adopted benchmarks (\textit{i.e.}, GTA5 $\rightarrow$ Cityscapes and SYNTHIA $\rightarrow$ Cityscapes) show that our method achieves competitive performance to complicated distillation methods. Notably, for the SYNTHIA$\rightarrow$ Cityscapes scenario, our method achieves the state-of-the-art performance with $57.8\%$ mIoU and $64.6\%$ mIoU on 16 classes and 13 classes. Code is available at https://github.com/ljjcoder/EHTDI.


翻译:在未监督的域调制(UDA)语义分解中,蒸馏法目前在性能中占主导地位。然而,蒸馏技术需要复杂的多阶段过程和许多训练技巧。在本文件中,我们提出了一个简单而有效的方法,可以达到先进的蒸馏方法的竞争性性能。我们的核心想法是从边界和特性的角度充分探索目标域域信息。首先,我们提出一种新型的混合战略,用地平流标签生成高质量的目标域域域。不同于以往工作的源地平面界限,我们选择高信任目标域域,然后将它们粘贴到源地平面图像中。在目标域域域域(目标域距的顶端点)和正确的标签中,我们可以产生目标域域域域域域域域域域(目标值的顶端点)的边界信息可以通过混合样本的学习来有效捕捉到。第二,我们设计一个多层次的对比损失,用来改进目标域域数据的表述,包括平流值和原位的美元等值域域域域域域域域域。通过两种实验方法,可以更准确地测量G-ral的域域域域成绩。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员