Interactive segmentation reduces the annotation time of medical images and allows annotators to iteratively refine labels with corrective interactions, such as clicks. While existing interactive models transform clicks into user guidance signals, which are combined with images to form (image, guidance) pairs, the question of how to best represent the guidance has not been fully explored. To address this, we conduct a comparative study of existing guidance signals by training interactive models with different signals and parameter settings to identify crucial parameters for the model's design. Based on our findings, we design a guidance signal that retains the benefits of other signals while addressing their limitations. We propose an adaptive Gaussian heatmaps guidance signal that utilizes the geodesic distance transform to dynamically adapt the radius of each heatmap when encoding clicks. We conduct our study on the MSD Spleen and the AutoPET datasets to explore the segmentation of both anatomy (spleen) and pathology (tumor lesions). Our results show that choosing the guidance signal is crucial for interactive segmentation as we improve the performance by 14% Dice with our adaptive heatmaps on the challenging AutoPET dataset when compared to non-interactive models. This brings interactive models one step closer to deployment on clinical workflows. We will make our code publically available.
翻译:互动区段减少了医疗图像的批注时间, 并允许批注者以校正互动方式( 如点击) 迭代完善标签标签, 例如 点击 。 虽然现有的互动模型将点击转换成用户指导信号, 与图像组合( 图像、 指导) 相结合, 如何最好地代表指导的问题尚未充分探讨 。 为了解决这个问题, 我们对现有指导信号进行一项比较研究, 培训具有不同信号和参数设置的互动模型, 以确定模型设计的关键参数 。 根据我们的调查结果, 我们设计了一个指导信号, 保留其他信号的好处, 同时解决其局限性 。 我们提议一个适应性高斯的热图示指导信号, 利用大地德距离变异以动态地调整每个热图的半径来形成( 图像、 指导) 。 我们对 MSD Spleen 和 Autopet 数据集进行研究, 以探索解剖( 质) 和 病理( 病理 ) 的分解 。 我们的结果表明, 选择指导信号对于交互分解至关重要, 因为我们用14 % Dice 来改进性互动模型, 我们用不适应性热解算方法, 将更接近一个可调制模 。</s>