Event extraction (EE) is the task of identifying interested event mentions from text. Conventional efforts mainly focus on the supervised setting. However, these supervised models cannot generalize to event types out of the pre-defined ontology. To fill this gap, many efforts have been devoted to the zero-shot EE problem. This paper follows the trend of modeling event-type semantics but moves one step further. We argue that using the static embedding of the event type name might not be enough because a single word could be ambiguous, and we need a sentence to define the type semantics accurately. To model the definition semantics, we use two separate transformer models to project the contextualized event mentions and corresponding definitions into the same embedding space and then minimize their embedding distance via contrastive learning. On top of that, we also propose a warming phase to help the model learn the minor difference between similar definitions. We name our approach Zero-shot Event extraction with Definition (ZED). Experiments on the MAVEN dataset show that our model significantly outperforms all previous zero-shot EE methods with fast inference speed due to the disjoint design. Further experiments also show that ZED can be easily applied to the few-shot setting when the annotation is available and consistently outperforms baseline supervised methods.
翻译:事件提取 (EE) 是确定文本中提及的有关事件的任务。 常规工作主要侧重于受监督的设置。 但是, 这些受监督的模型无法在预定义的本体学中将事件类型概括为事件类型。 为了填补这一空白, 许多工作都致力于零射 EE 问题。 本文遵循了事件类型语义学的建模趋势, 并进一步移动了一步。 我们认为, 使用事件类型名称的静态嵌入可能不够充分, 因为单词可能模糊, 我们需要一个句子来准确定义语义。 为了模拟定义语义, 我们使用两个独立的变异器模型来将背景化事件和相应定义投放到同一个嵌入空间中, 然后通过对比性学习将其嵌入距离最小化。 除此之外, 我们还提议了一个变暖阶段来帮助模型了解类似定义之间的小差异。 我们用定义来命名我们的方法 Zroshot 事件提取( ZED) 。 对 MAVEN 数据设置的实验显示, 我们的模型明显超越了以前所有零射 EE 方法的形状, 以快速推导速度预测速度投射出所有方法, 因为有不动性地显示不动的基线设计。 进一步的实验可以让Z 。