Multi-Task Learning (MTL) has achieved success in various fields. However, how to balance different tasks to achieve good performance is a key problem. To achieve the task balancing, there are many works to carefully design dynamical loss/gradient weighting strategies but the basic random experiments are ignored to examine their effectiveness. In this paper, we propose the Random Weighting (RW) methods, including Random Loss Weighting (RLW) and Random Gradient Weighting (RGW), where an MTL model is trained with random loss/gradient weights sampled from a distribution. To show the effectiveness and necessity of RW methods, theoretically we analyze the convergence of RW and reveal that RW has a higher probability to escape local minima, resulting in better generalization ability. Empirically, we extensively evaluate the proposed RW methods to compare with twelve state-of-the-art methods on five image datasets and two multilingual problems from the XTREME benchmark to show RW methods can achieve comparable performance with state-of-the-art baselines. Therefore, we think that the RW methods are important baselines for MTL and should attract more attentions.


翻译:多任务学习(MTL)在各个领域都取得了成功。然而,如何平衡不同任务以取得良好业绩是一个关键问题。为了实现任务平衡,有许多工作是仔细设计动态损益/梯度加权战略,但基本随机试验被忽略以检查其有效性。在本文件中,我们提议随机加权方法,包括随机失重(RLW)和随机梯度加权(RGW)方法,即对MTL模型进行随机失重/梯度加权培训,从分布中抽取样本。为了显示RW方法的有效性和必要性,理论上我们分析RW的趋同,并表明RW更有可能逃离当地微型模型,从而提高一般化能力。在本文中,我们广泛评价拟议的RW方法,以便与5个图像数据集的12种最先进的方法进行比较,以及XTREME基准中的两个多语言问题,以显示RW方法可以达到与国家基准相当的业绩。因此,我们认为,RW方法是MWTL的重要基准,应该吸引更多的注意。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员