Research on human reading has long documented that reading behavior shows task-specific effects, but it has been challenging to build general models predicting what reading behavior humans will show in a given task. We introduce NEAT, a computational model of the allocation of attention in human reading, based on the hypothesis that human reading optimizes a tradeoff between economy of attention and success at a task. Our model is implemented using contemporary neural network modeling techniques, and makes explicit and testable predictions about how the allocation of attention varies across different tasks. We test this in an eyetracking study comparing two versions of a reading comprehension task, finding that our model successfully accounts for reading behavior across the tasks. Our work thus provides evidence that task effects can be modeled as optimal adaptation to task demands.
翻译:人类阅读研究早已证明,阅读行为显示了特定任务的影响,但建立预测人类阅读行为在特定任务中将显示什么的一般模型一直具有挑战性。我们引入了NEAT,这是人类阅读中关注分配的计算模型,其依据的假设是,人类阅读优化了关注经济和任务成功之间的平衡。我们的模式使用当代神经网络模型技术来实施,对不同任务之间的关注分配如何不同作出明确和可测试的预测。我们在一项对阅读理解任务两种版本进行比较的跟踪研究中测试了这一点,发现我们的模式成功地记录了跨任务阅读行为。因此,我们的工作提供了证据,证明任务效应可以模拟为对任务需求的最佳适应。