Brain tumors are one of the life-threatening forms of cancer. Previous studies have classified brain tumors using deep neural networks. In this paper, we perform the later task using a collaborative deep learning technique, more specifically split learning. Split learning allows collaborative learning via neural networks splitting into two (or more) parts, a client-side network and a server-side network. The client-side is trained to a certain layer called the cut layer. Then, the rest of the training is resumed on the server-side network. Vertical distribution, a method for distributing data among organizations, was implemented where several hospitals hold different attributes of information for the same set of patients. To the best of our knowledge this paper will be the first paper to implement both split learning and vertical distribution for brain tumor classification. Using both techniques, we were able to achieve train and test accuracy greater than 90\% and 70\%, respectively.
翻译:脑肿瘤是威胁生命的癌症形式之一。 以前的研究利用深神经网络对脑肿瘤进行了分类。 在本文中, 我们使用合作深度学习技术( 更具体地说, 分离学习 ) 执行后期任务。 分裂学习可以通过神经网络分为两个( 或更多) 部分、 客户端网络和服务器端网络进行协作学习。 客户端被训练到一个叫做切开层的某一层。 然后, 其余的培训在服务器端网络上恢复。 垂直分布( 组织之间的数据分配方法), 在多个医院拥有同一组病人不同信息属性的情况下, 实施了垂直分布( 垂直分布 ) 。 根据我们所知, 本文将是第一个实施分裂学习和垂直分布用于脑肿瘤分类的论文 。 使用这两种技术, 我们得以分别实现超过 90 和 70 的培训和测试精度。