Architecture erosion has a detrimental effect on maintenance and evolution, as the implementation drifts away from the intended architecture. To prevent this, development teams need to understand early enough the symptoms of erosion, and particularly violations of the intended architecture. One way to achieve this, is through the automatic identification of architecture violations from textual artifacts, and particularly code reviews. In this paper, we developed 15 machine learning-based and 4 deep learning-based classifiers with three pre-trained word embeddings to identify violation symptoms of architecture erosion from developer discussions in code reviews. Specifically, we looked at code review comments from four large open-source projects from the OpenStack (Nova and Neutron) and Qt (Qt Base and Qt Creator) communities. We then conducted a survey to acquire feedback from the involved participants who discussed architecture violations in code reviews, to validate the usefulness of our trained classifiers. The results show that the SVM classifier based on word2vec pre-trained word embedding performs the best with an F1-score of 0.779. In most cases, classifiers with the fastText pre-trained word embedding model can achieve relatively good performance. Furthermore, 200-dimensional pre-trained word embedding models outperform classifiers that use 100 and 300-dimensional models. In addition, an ensemble classifier based on the majority voting strategy can further enhance the classifier and outperforms the individual classifiers. Finally, an online survey of the involved developers reveals that the violation symptoms identified by our approaches have practical value and can provide early warnings for impending architecture erosion.
翻译:暂无翻译