A memristor is a nonlinear two-terminal electrical element that incorporates memory features and nanoscale properties, enabling us to design very high-density artificial neural networks. To enhance the memory property, we should use mathematical frameworks like fractional calculus, which is capable of doing so. Here, we first present a fractional-order memristor synapse-coupling Hopfield neural network on two neurons and then extend the model to a neural network with a ring structure that consists of n sub-network neurons, increasing the synchronization in the network. Necessary and sufficient conditions for the stability of equilibrium points are investigated, highlighting the dependency of the stability on the fractional-order value and the number of neurons. Numerical simulations and bifurcation analysis, along with Lyapunov exponents, are given in the two-neuron case that substantiates the theoretical findings, suggesting possible routes towards chaos when the fractional order of the system increases. In the n-neuron case also, it is revealed that the stability depends on the structure and number of sub-networks.
翻译:内存器是一个非线性双端电子元件,包含内存特征和纳米级特性,使我们能够设计非常高密度的人工神经网络。为了增强记忆属性,我们应该使用数学框架,例如能够这样做的分数微积分体。这里,我们首先在两个神经元上展示一个分序的内存器,将Hopfield神经网络相交,然后将模型扩大到由n-次网络神经元组成的神经网络,增加网络的同步性。调查了平衡点稳定的必要和充分条件,突出了对分序值和神经数的稳定性依赖性。在两个中子中,对数值的模拟和双向分析,连同Lyapunov Exponentes,在证实理论结论的两部中进行了分析,提出了当系统分序增加时可能走向混乱的路径。在N-中子中子中,还显示,平衡点的稳定取决于子网络的结构和数量。