Network alignment task, which aims to identify corresponding nodes in different networks, is of great significance for many subsequent applications. Without the need for labeled anchor links, unsupervised alignment methods have been attracting more and more attention. However, the topological consistency assumptions defined by existing methods are generally low-order and less accurate because only the edge-indiscriminative topological pattern is considered, which is especially risky in an unsupervised setting. To reposition the focus of the alignment process from low-order to higher-order topological consistency, in this paper, we propose a fully unsupervised network alignment framework named HTC. The proposed higher-order topological consistency is formulated based on edge orbits, which is merged into the information aggregation process of a graph convolutional network so that the alignment consistencies are transformed into the similarity of node embeddings. Furthermore, the encoder is trained to be multi-orbit-aware and then be refined to identify more trusted anchor links. Node correspondence is comprehensively evaluated by integrating all different orders of consistency. {In addition to sound theoretical analysis, the superiority of the proposed method is also empirically demonstrated through extensive experimental evaluation. On three pairs of real-world datasets and two pairs of synthetic datasets, our HTC consistently outperforms a wide variety of unsupervised and supervised methods with the least or comparable time consumption. It also exhibits robustness to structural noise as a result of our multi-orbit-aware training mechanism.


翻译:网络调整任务旨在确定不同网络的相应节点,对于许多后续应用非常重要。在不需要贴标签的锚链链接的情况下,未经监督的网络调整方法吸引了越来越多的注意力。然而,现有方法界定的地形一致性假设一般是低顺序的,不那么准确,因为仅考虑偏向异端的地形模式,在不受监督的环境中,这种模式特别危险。为了将调整过程的重点从低顺序转向更高层次的地形一致性,我们在本文件中提议了一个完全不受监督的网络调整框架,称为HTC。拟议的较高层级的地形一致性是以边缘轨道为基础制定的,并被并入图形革命网络的信息汇总过程,这样,一致性就只有偏向异端的地形模式才被考虑,在不受监督的环境下,这特别危险。为了将调整过程的重点从低顺序转向更高层次的地形一致性。我们提出的网络统一框架是完全不受监督的。 {除了可靠的理论分析外,拟议方法的优越性是高层次的多轨道,同时通过广泛的实验性数据展示了我们不连续的地理结构结构结构结果。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员