Visually evaluating the goodness of generated Multivariate Time Series (MTS) are difficult to implement, especially in the case that the generative model is Generative Adversarial Networks (GANs). We present a general framework named Gaussian GANs to visually evaluate GANs using itself under the MTS generation task. Firstly, we attempt to find the transformation function in the multivariate Kolmogorov Smirnov (MKS) test by explicitly reconstructing the architecture of GANs. Secondly, we conduct the normality test of transformed MST where the Gaussian GANs serves as the transformation function in the MKS test. In order to simplify the normality test, an efficient visualization is proposed using the chi square distribution. In the experiment, we use the UniMiB dataset and provide empirical evidence showing that the normality test using Gaussian GANs and chi sqaure visualization is effective and credible.
翻译:难以对生成的多变时间序列(MTS) 进行视觉评估,特别是在基因模型是基因反转网络的情况下。 我们提出了一个名为Gaussian GANs的一般框架,用于在MTS的生成任务下对 GANs 进行视觉评估。 首先, 我们试图通过明确重建 GANs 的结构来找到多变的 Kolmogorov Smirnov (MKS) 测试中的转换功能。 其次, 我们进行变换的 MST 的正常性测试, Gaussian GANs 是MKS 测试中的转换功能。 为了简化正常性测试, 提议使用 chiquar 分布来进行高效可视化。 在实验中, 我们使用 UniMiB 数据集, 并提供实验证据表明使用 Gaussian GANs 和 chi sqaure 的正常性测试是有效和可信的。