Single image super-resolution (SISR) has played an important role in the field of image processing. Recent generative adversarial networks (GANs) can achieve excellent results on low-resolution images with small samples. However, there are little literatures summarizing different GANs in SISR. In this paper, we conduct a comparative study of GANs from different perspectives. We first take a look at developments of GANs. Second, we present popular architectures for GANs in big and small samples for image applications. Then, we analyze motivations, implementations and differences of GANs based optimization methods and discriminative learning for image super-resolution in terms of supervised, semi-supervised and unsupervised manners. Next, we compare performance of these popular GANs on public datasets via quantitative and qualitative analysis in SISR. Finally, we highlight challenges of GANs and potential research points for SISR.
翻译:最近的基因对抗网络(GANs)能够以小样本在低分辨率图像上取得优异结果,然而,在SISR中,几乎没有文献对不同的GANs进行总结。在本文中,我们从不同角度对GANs进行比较研究。我们首先研究GANs的发展情况。第二,我们用大小样本为GANs提供广受欢迎的图像应用结构。然后,我们分析GANs基于GANs的优化方法的动机、实施和差异,以及以监督、半监督和非监督方式对图像超分辨率的歧视性学习。然后,我们通过SISR的定量和定性分析,将这些受欢迎的GANs在公共数据集上的绩效进行比较。最后,我们强调GANs的挑战以及SISSR的潜在研究点。