We use Gaussian stochastic weight averaging (SWAG) to assess the model-form uncertainty associated with neural-network-based function approximation relevant to fluid flows. SWAG approximates a posterior Gaussian distribution of each weight, given training data, and a constant learning rate. Having access to this distribution, it is able to create multiple models with various combinations of sampled weights, which can be used to obtain ensemble predictions. The average of such an ensemble can be regarded as the `mean estimation', whereas its standard deviation can be used to construct `confidence intervals', which enable us to perform uncertainty quantification (UQ) with regard to the training process of neural networks. We utilize representative neural-network-based function approximation tasks for the following cases: (i) a two-dimensional circular-cylinder wake; (ii) the DayMET dataset (maximum daily temperature in North America); (iii) a three-dimensional square-cylinder wake; and (iv) urban flow, to assess the generalizability of the present idea for a wide range of complex datasets. SWAG-based UQ can be applied regardless of the network architecture, and therefore, we demonstrate the applicability of the method for two types of neural networks: (i) global field reconstruction from sparse sensors by combining convolutional neural network (CNN) and multi-layer perceptron (MLP); and (ii) far-field state estimation from sectional data with two-dimensional CNN. We find that SWAG can obtain physically-interpretable confidence-interval estimates from the perspective of model-form uncertainty. This capability supports its use for a wide range of problems in science and engineering.
翻译:我们使用高尔斯测重平均值(SWAG)来评估与流体流相关的神经网络功能近似值相关的模型形式不确定性。 SWAG根据培训数据和恒定学习率,近似于每个重量的后表高尔斯分布,根据培训数据和不断学习率。通过这种分布,它能够创建多种模型,结合各种抽样重量的组合,用于获得混合预测。这种组合的平均值可以被视为“平均估计”,而其标准偏差可以用来构建“信任间隔”,从而使我们能够在神经网络的培训过程中进行不确定性量化(UQ Q ) 。 我们使用具有代表性的神经网络功能,为以下案例进行近似近似任务:(一) 两维圆形圆形圆柱形提醒;(二) DayMET数据集(北美最高日温度);(三维平面平方-圆柱形觉醒;以及(四)城市流动,用以评估当前神经网络模型的可通用性,从而从复杂的系统网络中进行广泛应用。 SML-WA 能够从我们所处的网络的深度数据类型中获取。 SWA-SWA-S-S-S-S-S-S-S-S-S-S-S-S-R-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-R-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S