This paper proposes a new class of real-time optimization schemes to overcome system-model mismatch of uncertain processes. This work's novelty lies in integrating derivative-free optimization schemes and multi-fidelity Gaussian processes within a Bayesian optimization framework. The proposed scheme uses two Gaussian processes for the stochastic system, one emulates the (known) process model, and another, the true system through measurements. In this way, low fidelity samples can be obtained via a model, while high fidelity samples are obtained through measurements of the system. This framework captures the system's behavior in a non-parametric fashion while driving exploration through acquisition functions. The benefit of using a Gaussian process to represent the system is the ability to perform uncertainty quantification in real-time and allow for chance constraints to be satisfied with high confidence. This results in a practical approach that is illustrated in numerical case studies, including a semi-batch photobioreactor optimization problem.
翻译:本文提出了一个新的实时优化计划类别,以克服系统模型中不确定过程不匹配的问题。 这项工作的新颖之处在于将衍生产品不起作用的优化计划和多纤维化高斯进程纳入贝叶斯优化框架。 拟议的计划对随机系统采用两种高斯进程,一种类似于(已知)过程模型,另一种通过测量来建立真正的系统。 这样, 可以通过模型获得低忠诚样本, 而通过系统测量则获得高忠诚性样本。 这个框架在通过获取功能推动勘探时,以非参数方式捕捉系统的行为。 使用高斯进程代表系统的好处是能够实时进行不确定性量化,并允许机会限制以高度信心满足。 这个结果体现在数字案例研究中的实际方法, 包括半批光生力优化问题 。