We introduce a novel edge tracing algorithm using Gaussian process regression. Our edge-based segmentation algorithm models an edge of interest using Gaussian process regression and iteratively searches the image for edge pixels in a recursive Bayesian scheme. This procedure combines local edge information from the image gradient and global structural information from posterior curves, sampled from the model's posterior predictive distribution, to sequentially build and refine an observation set of edge pixels. This accumulation of pixels converges the distribution to the edge of interest. Hyperparameters can be tuned by the user at initialisation and optimised given the refined observation set. This tunable approach does not require any prior training and is not restricted to any particular type of imaging domain. Due to the model's uncertainty quantification, the algorithm is robust to artefacts and occlusions which degrade the quality and continuity of edges in images. Our approach also has the ability to efficiently trace edges in image sequences by using previous-image edge traces as a priori information for consecutive images. Various applications to medical imaging and satellite imaging are used to validate the technique and comparisons are made with two commonly used edge tracing algorithms.
翻译:我们引入了一种使用 Gaussian 进程回归的新型边缘跟踪算法。 我们的边缘偏移算法模型是一种使用 Gaussian 进程回归和迭接搜索循环贝叶色图中边缘像素的图像。 这个程序结合了图像梯度的本地边缘信息, 以及来自红外曲线的全球性结构信息, 从模型的后部预测分布中取样, 并依次构建和完善一组边缘像素的观测。 这种像素的累积将图像分布汇集到利益边缘。 用户在初始化时可以调整超强参数, 并根据精细的观察集进行优化。 这种缓冲方法不需要任何先前的培训, 也不局限于任何特定的成像域类型。 由于模型的不确定性量化, 该算法对于降低图像边缘质量和连续性的手工艺和封闭性非常有力。 我们的方法还有能力通过使用先前的图像边缘痕来有效跟踪图像序列中的边缘边缘。 用于医学成像和卫星成像学的多种应用是用来校正的, 用来验证技术, 。