In the maximum satisfiability problem (MAX-SAT) we are given a propositional formula in conjunctive normal form and have to find an assignment that satisfies as many clauses as possible. We study the parallel parameterized complexity of various versions of MAX-SAT and provide the first constant-time algorithms parameterized either by the solution size or by the allowed excess relative to some guarantee ("above guarantee" versions). For the dual parameterized version where the parameter is the number of clauses we are allowed to leave unsatisfied, we present the first parallel algorithm for MAX-2SAT (known as ALMOST-2SAT). The difficulty in solving ALMOST-2SAT in parallel comes from the fact that the iterative compression method, originally developed to prove that the problem is fixed-parameter tractable at all, is inherently sequential. We observe that a graph flow whose value is a parameter can be computed in parallel and use this fact to develop a parallel algorithm for the vertex cover problem parameterized above the size of a given matching. Finally, we study the parallel complexity of MAX-SAT parameterized by the vertex cover number, the treedepth, the feedback vertex set number, and the treewidth of the input's incidence graph. While MAX-SAT is fixed-parameter tractable for all of these parameters, we show that they allow different degrees of possible parallelization. For all four we develop dedicated parallel algorithms that are constructive, meaning that they output an optimal assignment - in contrast to results that can be obtained by parallel meta-theorems, which often only solve the decision version.
翻译:在最大相容性问题(MAX-SAT)中,我们得到了一种配对正常形式的配方公式,并且必须找到一个尽可能满足多个条款的配方。我们研究了各种版本的MAX-SAT的平行参数复杂性,并且提供了第一个固定时间算法参数参数,这些算法要么以溶液大小为参数,要么以允许的超出某些保障(“假设保证”版本)为参数。对于双重参数版本,其中的参数是允许我们不满意的条款数量,我们为MAX-2SAT(称为 ALMOST-2SAT) 提供了第一个平行算法。在平行解决ALMOST-2SAT时往往困难在于:最初开发的迭代压缩方法,以证明问题是固定参数可移动的,要么是允许某些参数的固定参数。我们研究的是MAX-SAT参数的平行参数的平行复杂性,而我们研究的顶端定值是四个直径的直径直径直线,而所有直径直径直径直径直径直径直径直的直径直径直径直径反向直径直径直径直径直径直径直径直图,我们只能通过这些直径直径直径直径直径直的直的直的直方向直方向直方向直图的直方向图图,我们径直图的反向的反向反向方向图,我们观察。我们观察结果显示所有直的直的直的直的直的直方向流结果路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路,我们通过所有的直路路路路路路,我们通过所有的直路路路路路路路路路路路路路路路路路路路,通过直路,我们方的直路,我们方的直路路路路路路路路路,通过直路,我们只能,我们通过所有的直路路路路路路路路路路路的直路的直路路路,通过直路的直路,我们方的直径直路,我们方的直路,我们方的直路路路路路路路路路路路路路路路路路