We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width. This unifies and extends nearly all previously known polynomial time results on graph classes, and answers open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et al. [Graphs Combin., 2009]. This constitutes the first result concerning structural parameterizations of this problem. We show that the problem is FPT when parameterized by the vertex cover number on general graphs, and on chordal graphs when parameterized by the number of colors. Additionally, we observe that our algorithm for graphs of bounded clique-width can be adapted to solve the Fall Coloring problem within the same runtime bound. The running times of the clique-width based algorithms for b-Coloring and Fall Coloring are tight under the Exponential Time Hypothesis.
翻译:我们提供了一个用于在恒定圆形曲线的图形上进行 b- Color- cluque- width 的b 的多元时间算法。 这个算法将几乎所有以前已知的多元时间结果统一并扩展到图形类中, 并回答由 Campos 和 Silva [Algorithmica, 2018] 和 Bonomo et al. [Graphs 组合. 2009] 提出的开放问题。 这是这个问题结构参数化的第一个结果。 我们显示, 当一般图形的顶端覆盖号参数和按颜色数参数化时, 问题就在于 FPT 。 此外, 我们观察到, 我们对于受约束的圆形线的图形的算法可以调整, 以解决同一运行期间的倒色问题 。 基于 b- 彩色和跌色的曲线算法的运行时间在博学时代假称下是紧凑紧的 。