We suggest a novel procedure for online change point detection. Our approach expands an idea of maximizing a discrepancy measure between points from pre-change and post-change distributions. This leads to a flexible procedure suitable for both parametric and nonparametric scenarios. We prove non-asymptotic bounds on the average running length of the procedure and its expected detection delay. The efficiency of the algorithm is illustrated with numerical experiments on synthetic and real-world data sets.
翻译:我们建议采用一种新的在线更改点检测程序。 我们的方法扩大了从变化前和变化后分布的点数之间最大化差异度量的理念。 这导致一种适用于参数和非参数情景的灵活程序。 我们证明程序的平均运行时间及其预期的检测延迟不是无症状的界限。 算法的效率通过合成和真实世界数据集的数值实验来说明。