We propose a computationally efficient, moving sum (MOSUM) procedure for segmenting univariate data under piecewise linearity. It detects multiple change points where the underlying signal undergoes discontinuous jumps or slope changes. We show that the proposed method controls the family-wise error rate at a given significance level (asymptotically) and achieves consistency in multiple change point detection, all under weak assumptions permitting heavy-tailedness. We also obtain the rate of localisation when the signal is piecewise linear and continuous, which matches the known minimax optimal rate. Applied to simulated datasets, and a real data example on rolling element-bearing prognostics, the MOSUM procedure performs competitively compared to the existing methods.
翻译:我们提出一个计算效率高、移动和移动总和(MOSUM)程序,用于将单亚值数据分解成片面线性线性数据。 它检测了基础信号发生不连续跳跃或斜坡变化的多个变化点。 我们显示,拟议方法控制了一定重要水平的家庭错误率( 暂时性), 并在多个变化点探测中实现了一致性, 所有这些都是在允许重尾化的薄弱假设下。 我们还在信号为小线性和连续时获得定位率, 与已知的微小最大最佳速度相匹配。 应用到模拟数据集, 以及滚动元素预感学的真实数据示例, MOSUM程序与现有方法相比具有竞争力。