Named entity recognition (NER) task aims at identifying entities from a piece of text that belong to predefined semantic types such as person, location, organization, etc. The state-of-the-art solutions for flat entities NER commonly suffer from capturing the fine-grained semantic information in underlying texts. The existing span-based approaches overcome this limitation, but the computation time is still a concern. In this work, we propose a novel span-based NER framework, namely Global Pointer (GP), that leverages the relative positions through a multiplicative attention mechanism. The ultimate goal is to enable a global view that considers the beginning and the end positions to predict the entity. To this end, we design two modules to identify the head and the tail of a given entity to enable the inconsistency between the training and inference processes. Moreover, we introduce a novel classification loss function to address the imbalance label problem. In terms of parameters, we introduce a simple but effective approximate method to reduce the training parameters. We extensively evaluate GP on various benchmark datasets. Our extensive experiments demonstrate that GP can outperform the existing solution. Moreover, the experimental results show the efficacy of the introduced loss function compared to softmax and entropy alternatives.
翻译:命名实体识别(NER)任务旨在从预先定义的语义类型(如人、地点、组织等)的文本中确定实体。 NER最先进的解决方案通常会因在基础文本中捕捉精细测的语义信息而受到影响。现有的基于跨范围的方法克服了这一限制,但计算时间仍然令人关切。在这项工作中,我们提出了一个新的基于跨基础的NER框架,即全球定位(GP),通过多复制关注机制利用相对位置。最终目标是使全球观点能够考虑开始和结束位置来预测实体。为此,我们设计两个模块来识别某个实体的头和尾,以使培训和推断过程之间出现不一致。此外,我们引入了一个新的分类损失函数,以解决不平衡标签问题。在参数方面,我们引入了一个简单而有效的近似方法来减少培训参数。我们广泛评价了各种基准数据集的GP。我们的广泛实验表明,GP能够超越现有的解决方案。此外,实验结果显示,GP可以比较变软的替代方法。