Motivated by decentralized sensing and policy evaluation problems, we consider a particular type of distributed stochastic optimization problem over a network, called the online stochastic distributed averaging problem. We design a dual-based method for this distributed consensus problem with Polyak--Ruppert averaging and analyze its behavior. We show that the proposed algorithm attains an accelerated deterministic error depending optimally on the condition number of the network, and also that it has an order-optimal stochastic error. This improves on the guarantees of state-of-the-art distributed stochastic optimization algorithms when specialized to this setting, and yields -- among other things -- corollaries for decentralized policy evaluation. Our proofs rely on explicitly studying the evolution of several relevant linear systems, and may be of independent interest. Numerical experiments are provided, which validate our theoretical results and demonstrate that our approach outperforms existing methods in finite-sample scenarios on several natural network topologies.
翻译:在分散遥感和政策评估问题的推动下,我们考虑在网络上存在一种特定类型的分布式随机优化问题,称为在线随机分布平均问题。我们设计了一种双基方法,用Polyak-Ruppert的平均值来应对这一分布式共识问题,并分析其行为。我们表明,拟议的算法取得了加速的确定性错误,其最佳程度取决于网络的条件数量,还表明它有一个顺序最优的随机优化错误。这改进了在专门为此设置的情况下对最新分布式随机优化算法的保障,并产生了 -- -- 除其他外 -- -- 分散化政策评估的滚动。我们的证据依赖于明确研究若干相关线性系统的演变,并可能具有独立的兴趣。我们提供了数字实验,这些实验证实了我们的理论结果,并表明我们的方法在几种自然网络结构的有限抽样假设中超过了现有的方法。