The road network graph is a critical component for downstream tasks in autonomous driving, such as global route planning and navigation. In the past years, road network graphs are usually annotated by human experts manually, which is time-consuming and labor-intensive. To annotate road network graphs effectively and efficiently, automatic algorithms for road network graph detection are demanded. Most existing methods either adopt a post-processing step on semantic segmentation maps to produce road network graphs, or propose graph-based algorithms to directly predict the graphs. However, these works suffer from hard-coded algorithms and inferior performance. To enhance the previous state-of-the-art (SOTA) method RNGDet, we add an instance segmentation head to better supervise the training, and enable the network to leverage multi-scale features of the backbone. Since the new proposed approach is improved from RNGDet, we name it RNGDet++. Experimental results show that our RNGDet++ outperforms baseline methods in terms of almost all evaluation metrics on two large-scale public datasets. Our code and supplementary materials are available at \url{https://tonyxuqaq.github.io/projects/RNGDetPlusPlus/}.


翻译:道路网络图是自主驾驶(如全球路线规划和导航)下游任务的关键组成部分。过去几年,道路网络图通常由人类专家手工加注,这既耗时又耗力。为了说明公路网络图,需要有效和高效地使用自动算法来探测公路网络图。大多数现有方法要么在语义分割图上采用后处理步骤来制作道路网络图,要么提出基于图形的算法来直接预测图表。然而,这些工程受到硬编码算法和低效表现的影响。为了加强以前的“最先进”(SOTA)方法RNGDet,我们增加一个实例分解头来更好地监督培训,并使网络能够利用多尺度的骨干特征。由于拟议的新方法从RNGDet得到改进,我们称之为RNGDett++。实验结果显示,我们的“RNGDDet++”在两种大型公共数据集的几乎所有评价指标方面都超越了基线方法。我们的代码和补充材料可在以下两个大规模公共数据集中找到。我们的代码和补充材料。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员