Video privacy leakage is becoming an increasingly severe public problem, especially in cloud-based video surveillance systems. It leads to the new need for secure cloud-based video applications, where the video is encrypted for privacy protection. Despite some methods that have been proposed for encrypted video moving object detection and tracking, none has robust performance against complex and dynamic scenes. In this paper, we propose an efficient and robust privacy-preserving motion detection and multiple object tracking scheme for encrypted surveillance video bitstreams. By analyzing the properties of the video codec and format-compliant encryption schemes, we propose a new compressed-domain feature to capture motion information in complex surveillance scenarios. Based on this feature, we design an adaptive clustering algorithm for moving object segmentation with an accuracy of 4x4 pixels. We then propose a multiple object tracking scheme that uses Kalman filter estimation and adaptive measurement refinement. The proposed scheme does not require video decryption or full decompression and has a very low computation load. The experimental results demonstrate that our scheme achieves the best detection and tracking performance compared with existing works in the encrypted and compressed domain. Our scheme can be effectively used in complex surveillance scenarios with different challenges, such as camera movement/jitter, dynamic background, and shadows.
翻译:视频隐私渗漏正在成为一个日益严重的公共问题,特别是在云基视频监视系统中。这导致对基于云的视频安全应用软件的新需求,因为视频是用于隐私保护的加密视频。尽管为加密视频移动对象探测和跟踪提出了一些方法,但没有一种在复杂和动态的场景中具有很强的性能。在本文中,我们建议对加密监控视频位子进行高效和稳健的隐私保护动作探测和多个对象跟踪计划。通过分析视频编码和格式合规加密计划的性质,我们提出了一个新的压缩域域功能,以便在复杂的监视情景中捕捉到运动信息。基于这一特性,我们设计了移动目标分割的适应性组合算法,精确度为 4x4 像素。我们然后提出一个使用Kalman过滤估计和适应性测量改进的多个对象跟踪计划。拟议方案不需要视频解密或全面解压缩,而且计算负荷非常低。实验结果表明,我们的计划与加密和压缩域内现有工程相比,能够实现最佳的检测和跟踪和跟踪性能。我们的计划可以在复杂的监视情景中有效使用,例如摄影机的动态/感光学背景。