Visual object tracking is an important computer vision problem with numerous real-world applications including human-computer interaction, autonomous vehicles, robotics, motion-based recognition, video indexing, surveillance and security. In this paper, we aim to extensively review the latest trends and advances in the tracking algorithms and evaluate the robustness of trackers in the presence of noise. The first part of this work comprises a comprehensive survey of recently proposed tracking algorithms. We broadly categorize trackers into correlation filter based trackers and the others as non-correlation filter trackers. Each category is further classified into various types of trackers based on the architecture of the tracking mechanism. In the second part of this work, we experimentally evaluate tracking algorithms for robustness in the presence of additive white Gaussian noise. Multiple levels of additive noise are added to the Object Tracking Benchmark (OTB) 2015, and the precision and success rates of the tracking algorithms are evaluated. Some algorithms suffered more performance degradation than others, which brings to light a previously unexplored aspect of the tracking algorithms. The relative rank of the algorithms based on their performance on benchmark datasets may change in the presence of noise. Our study concludes that no single tracker is able to achieve the same efficiency in the presence of noise as under noise-free conditions; thus, there is a need to include a parameter for robustness to noise when evaluating newly proposed tracking algorithms.
翻译:视觉物体跟踪是一个重要的计算机视觉问题, 包括人- 计算机互动、自主飞行器、机器人、运动识别、视频索引、监视和安全等许多真实世界应用程序。 在本文中, 我们的目标是广泛审查跟踪算法的最新趋势和最新进展, 并评估跟踪器在噪音面前的稳健性。 这项工作的第一部分包括对最近提议的跟踪算法进行全面调查。 我们广泛将跟踪器分类为基于相关过滤器的跟踪器, 并将其他作为非关联过滤器的跟踪器。 每个类别进一步分类为基于跟踪机制架构的各类跟踪器。 在这项工作的第二部分, 我们实验性地评估跟踪算法在添加白高山噪音时的稳健性。 在2015年的物体跟踪基准中增加了多种程度的添加噪声, 并且对跟踪算法的精确度和成功率进行了评估。 一些算法的性退化程度比其他的要大, 这使得跟踪算算法中一个以前未探索的方面更加稳健。 基于跟踪机制架构的跟踪算法的相对等级。 在这项工作的第二部分, 我们实验中基于其基准数据集的性表现, 跟踪算法的相对等级, 将无法在单个的精确性定位中进行测测测测测测测。 。 因此, 我们的研究将得出, 需要在新时, 的精确到在一次的精确性 。