In this paper, we propose a robust edge-direct visual odometry (VO) based on CNN edge detection and Shi-Tomasi corner optimization. Four layers of pyramids were extracted from the image in the proposed method to reduce the motion error between frames. This solution used CNN edge detection and Shi-Tomasi corner optimization to extract information from the image. Then, the pose estimation is performed using the Levenberg-Marquardt (LM) algorithm and updating the keyframes. Our method was compared with the dense direct method, the improved direct method of Canny edge detection, and ORB-SLAM2 system on the RGB-D TUM benchmark. The experimental results indicate that our method achieves better robustness and accuracy.
翻译:在本文中,我们根据CNN的边缘探测和Shi-Tomasi角优化,提出了一个强大的边缘直观视觉测量(VO)法。从图像中提取了四层金字塔,这是减少框架间运动错误的拟议方法。这个方法使用CNN的边缘探测和 Shi-Tomasi角优化来从图像中提取信息。然后,利用Levenberg-Marquardt(LM)算法来进行构成估计,并更新了关键框架。我们的方法与密集的直接方法、改进的Canny边缘探测直接方法以及RGB-D TUM基准的ORB-SLAM2系统进行了比较。实验结果表明,我们的方法更可靠,更准确。