This work studies a multi-cell one-bit massive multiple-input multiple-output (MIMO) system that employs one-bit analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) at each base station (BS). We utilize Bussgang decomposition to derive downlink signal-to-quantization-plus-interference-plus-noise ratio (SQINR) and ergodic achievable rate expressions under one-bit quantized maximum ratio transmission (MRT) and zero-forcing (ZF) precoding schemes considering scenarios with and without pilot contamination (PC) in the derived channel estimates. The results are also simplified for the mixed architecture that employs full resolution (FR) ADCs and one-bit DACs, and the conventional architecture that employs FR ADCs and DACs. The SQINR is shown to decrease by a factor of $2/\pi$ and $4/\pi^2$ in the one-bit setting compared to that achieved in the mixed setting and conventional setting respectively under MRT precoding without PC. Interestingly, the decrease in SQINR is less when we consider PC, which is shown to adversely impact the conventional system more than the one-bit system. Similar insights are obtained under ZF precoding with the decrease in the SQINR with the use of one-bit ADCs and DACs being more pronounced. We utilize the derived expressions to yield performance insights related to power efficiency, the numbers of antennas needed by the three architectures to achieve the same sum-rate, and energy efficiency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员