Robots that carry out tasks and interact in complex environments will inevitably commit errors. Error detection is thus an important ability for robots to master, to work in an efficient and productive way. People leverage social cues from others around them to recognize and repair their own mistakes. With advances in computing and AI, it is increasingly possible for robots to achieve a similar error detection capability. In this work, we review current literature around the topic of how social cues can be used to recognize task failures for human-robot interaction (HRI). This literature review unites insights from behavioral science, human-robot interaction, and machine learning, to focus on three areas: 1) social cues for error detection (from behavioral science), 2) recognizing task failures in robots (from HRI), and 3) approaches for autonomous detection of HRI task failures based on social cues (from machine learning). We propose a taxonomy of error detection based on self-awareness and social feedback. Finally, we leave recommendations for HRI researchers and practitioners interested in developing robots that detect (physical) task errors using social cues from bystanders.
翻译:执行复杂环境中的任务和互动的机器人必然会犯错误。 因此,错误检测是机器人掌握、高效和高效工作的重要能力。 人们利用周围其他人的社会提示来认识和弥补自己的错误。 随着计算机和AI的进步,机器人越来越有可能获得类似的错误检测能力。 在这项工作中,我们审查关于如何利用社会提示来识别人类-机器人互动任务失败的当前文献。本文献审查将行为科学、人类-机器人互动和机器学习的洞察力汇集到三个领域:(1) 发现错误的社会提示(来自行为科学),(2) 承认机器人的任务失败(来自HRI),(3) 依据社会提示(来自机器学习)自主检测人权任务失败的方法。我们根据自我意识和社会反馈,建议对错误检测进行分类。最后,我们给对开发机器人感兴趣的人权研究人员和从业人员留下建议,这些机器人利用旁观者的社会提示来检测(物理)任务错误。