Unsupervised domain adaptation (UDA) with pre-trained language models (PrLM) has achieved promising results since these pre-trained models embed generic knowledge learned from various domains. However, fine-tuning all the parameters of the PrLM on a small domain-specific corpus distort the learned generic knowledge, and it is also expensive to deployment a whole fine-tuned PrLM for each domain. This paper explores an adapter-based fine-tuning approach for unsupervised domain adaptation. Specifically, several trainable adapter modules are inserted in a PrLM, and the embedded generic knowledge is preserved by fixing the parameters of the original PrLM at fine-tuning. A domain-fusion scheme is introduced to train these adapters using a mix-domain corpus to better capture transferable features. Elaborated experiments on two benchmark datasets are carried out, and the results demonstrate that our approach is effective with different tasks, dataset sizes, and domain similarities.


翻译:未受监督的域适应(UDA)具有预先培训的语言模型(PrLM),这些经过预先培训的模型吸收了从不同领域获得的通用知识,因此取得了大有希望的成果。然而,微调PrLM关于一个小领域特有内容的所有参数,扭曲了所学的通用知识,对每个领域部署一个全精细调整的PrLM(UDA)也很昂贵。本文探讨了一个基于适应器的微调方法,用于未经监督的域适应。具体地说,几个可培训的适应器模块被插入了PrLM(PrLM)中,而嵌入的通用知识通过微调确定原PrLM(PrLM)的参数而得以保存。引入了一种域融合计划,用混合域特质来培训这些适应器,以更好地捕捉可转让的特性。对两个基准数据集进行了精心设计的实验,结果表明,我们的方法与不同的任务、数据集大小和领域相似性是有效的。

1
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Arxiv
8+阅读 · 2021年10月28日
Arxiv
5+阅读 · 2020年3月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Top
微信扫码咨询专知VIP会员