Unsupervised domain adaptive classifcation intends to improve the classifcation performance on unlabeled target domain. To alleviate the adverse effect of domain shift, many approaches align the source and target domains in the feature space. However, a feature is usually taken as a whole for alignment without explicitly making domain alignment proactively serve the classifcation task, leading to sub-optimal solution. In this paper, we propose an effective Task-oriented Alignment (ToAlign) for unsupervised domain adaptation (UDA). We study what features should be aligned across domains and propose to make the domain alignment proactively serve classifcation by performing feature decomposition and alignment under the guidance of the prior knowledge induced from the classifcation task itself. Particularly, we explicitly decompose a feature in the source domain into a task-related/discriminative feature that should be aligned, and a task-irrelevant feature that should be avoided/ignored, based on the classifcation meta-knowledge. Extensive experimental results on various benchmarks (e.g., Offce-Home, Visda-2017, and DomainNet) under different domain adaptation settings demonstrate the effectiveness of ToAlign which helps achieve the state-of-the-art performance. The code is publicly available at https://github.com/microsoft/UDA


翻译:不受监督的域适应分类法旨在改进未加标签的目标域的分类性表现。 为减轻域变的不利影响,许多方法在特性空间中对源和目标域进行对齐。 但是,通常将一个特性作为一个整体来调整,而不明确使域对齐为分类性任务,从而导致亚最佳解决方案。 在本文件中,我们提议为不受监督的域适应(UDA)提供一个有效的面向任务的对齐(调整)功能。我们研究哪些特点应统一到各个域,并提议通过在先前从分类任务本身产生的知识指导下进行特性分解和对齐,使域调整积极为分类服务。特别是,我们明确将源域的一个特性分解成一个与分类/差异相关的特征,从而导致亚优于最佳的解决方案。我们建议根据分类元知识,为避免/连接任务相关特性。我们研究各种基准(例如, Offce-Home, Visda-2017, Domainal) 和DOmaial-Oial-Oial-com)下的不同域适应设置下,可帮助实现可公开应用的系统/OFIFFIA-Net。

7
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年3月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文笔记之Meta-Tracker(ECCV2018)
统计学习与视觉计算组
16+阅读 · 2018年8月24日
Arxiv
0+阅读 · 2021年12月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文笔记之Meta-Tracker(ECCV2018)
统计学习与视觉计算组
16+阅读 · 2018年8月24日
Top
微信扫码咨询专知VIP会员