In this paper, we propose a spoken term detection algorithm for simultaneous prediction and localization of in-vocabulary and out-of-vocabulary terms within an audio segment. The proposed algorithm infers whether a term was uttered within a given speech signal or not by predicting the word embeddings of various parts of the speech signal and comparing them to the word embedding of the desired term. The algorithm utilizes an existing embedding space for this task and does not need to train a task-specific embedding space. At inference the algorithm simultaneously predicts all possible locations of the target term and does not need dynamic programming for optimal search. We evaluate our system on several spoken term detection tasks on read speech corpora.
翻译:在本文中,我们提出一个语音术语探测算法,用于同步预测音频段内的词汇和词汇外术语并将其本地化。 拟议的算法推断一个术语是否在特定语音信号中表达,是否通过预测语音信号各部分的字嵌入,并将其与理想术语嵌入的词进行比较。 该算法利用了现有嵌入空间执行这项任务,不需要培训特定任务嵌入空间。 该算法同时预测了目标术语的所有可能位置,不需要为最佳搜索进行动态编程。 我们评估了我们关于读音公司的一些口头术语探测任务。