Recently, graph neural networks (GNNs) have shown powerful ability to handle few-shot classification problem, which aims at classifying unseen samples when trained with limited labeled samples per class. GNN-based few-shot learning architectures mostly replace traditional metric with a learnable GNN. In the GNN, the nodes are set as the samples embedding, and the relationship between two connected nodes can be obtained by a network, the input of which is the difference of their embedding features. We consider this method of measuring relation of samples only models the sample-to-sample relation, while neglects the specificity of different tasks. That is, this method of measuring relation does not take the task-level information into account. To this end, we propose a new relation measure method, namely the attention-based task-level relation module (ATRM), to explicitly model the task-level relation of one sample to all the others. The proposed module captures the relation representations between nodes by considering the sample-to-task instead of sample-to-sample embedding features. We conducted extensive experiments on four benchmark datasets: mini-ImageNet, tiered-ImageNet, CUB-200-2011, and CIFAR-FS. Experimental results demonstrate that the proposed module is effective for GNN-based few-shot learning.


翻译:最近,平面神经网络(GNNs)显示出处理少量分类问题的强大能力,目的是在每类经过有限的标签样本培训时对未见样品进行分类,而每类有有限的标签样本进行分类。基于GNN的少发学习结构大多用可学习的GNN来取代传统度量。在GNN中,将节点设置为样品嵌入,两个连接节点之间的关系可以通过网络获得,其输入是其嵌入特征的差异。我们认为,这种衡量样品关系关系的方法只用样本到样本的模型,而忽视不同任务的特殊性。也就是说,这种衡量关系的方法没有考虑到任务一级的信息。为此,我们提出了一种新的关系计量方法,即基于关注的任务级关系模块(ATRM),以明确模拟一个样本与所有其他样本的任务级关系。拟议模块通过考虑样本到任务,而不是样本到样本到样本的嵌入特征,来反映各节点之间的关系。我们在四个基准数据集上进行了广泛的实验:MIS-INet,该模型展示了基于G-IFS-INet的G-IM-IM-IM-IM-IM-IG-IM-IM-IM-IM-IM-IM-IM-IM-IM-IM-IM-IG-IG-IM-IM-IM-IM-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-A-I-I-I-I-D-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-

2
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
注意力图神经网络的小样本学习
专知会员服务
191+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
7+阅读 · 2020年3月1日
Deep Comparison: Relation Columns for Few-Shot Learning
Arxiv
16+阅读 · 2018年4月2日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员