We develop variational Laplace for Bayesian neural networks (BNNs) which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. The Variational Laplace objective is simple to evaluate, as it is (in essence) the log-likelihood, plus weight-decay, plus a squared-gradient regularizer. Variational Laplace gave better test performance and expected calibration errors than maximum a-posteriori inference and standard sampling-based variational inference, despite using the same variational approximate posterior. Finally, we emphasise care needed in benchmarking standard VI as there is a risk of stopping before the variance parameters have converged. We show that early-stopping can be avoided by increasing the learning rate for the variance parameters.
翻译:我们为Bayesian神经网络(BNNs)开发变式拉普尔(Laplace ), 利用对ELBO进行估计的缩略图的本地近似值, 而无需对神经网络重量进行随机抽样。变式拉普尔(Laplace)的目标很简单, 因为它( 本质上) 是日志相似度, 加上重量- 德开, 加上平方位定律。 变式拉普尔的测试性能和预期校准差优于最大异性推断值和标准抽样变异推导法, 尽管使用了相同的变式近似近似值。 最后, 我们强调基准六所需的谨慎, 因为有在差异参数趋同之前停止的危险。 我们表明,通过提高差异参数的学习率,可以避免早期停止。