The pre-trained model (PTM) is revolutionizing Artificial intelligence (AI) technology. It can learn general language features on massive data and then be fine-tuned on task-specific data. Unfortunately, the computing hardware requirement of PTM training is prohibitively expensive, which makes it a game for a small proportion of people in the AI community. Therefore, we proposed a system called PatrickStar to lower the hardware requirements of PTMs and make them accessible to everyone. PatrickStar uses the CPU-GPU heterogeneous memory space to store the model data. Different from existing works, we first manage the model data in a fine-grained manner by organizing them in memory chunks and dynamically distributing them in the heterogeneous memory space. Guided by the runtime memory statistics collected in a warm-up iteration, chunks are orchestrated efficiently in heterogeneous memory and generate lower CPU-GPU data transmission volume. Symbiosis with the Zero Redundancy Optimizer, PatrickStar scales to multiple GPUs using data parallelism, with lower communication bandwidth requirements and more efficient bandwidth utilization. The system can train tasks on bigger models and larger batch sizes, which existing works cannot complete. Experimental results show that PatrickStar trains a 12 billion parameters GPT model, 1.5x as large as the model scale limit of the SOTA works, on an 8xV100 and 240GB CPU memory node, and also achieves significantly higher computing efficiency than SOTA. Even on a $700 personal computer, it can train a 0.7 billion parameter GPT model. Our code is publicly available.
翻译:预培训模式( PTM) 正在革命人工智能技术( PTM) 。 它可以在大量数据中学习通用语言特征, 然后对具体任务的数据进行微调。 不幸的是, PTM 培训的计算机硬件要求极其昂贵, 这使得它成为AI社区一小部分人的游戏。 因此, 我们提议了一个名为 PatrickStar 的系统, 以降低PTM 的硬件要求, 并让所有人都可以使用。 PatrickStar 使用 CPU- GPU 混杂的存储空间存储模型数据。 不同于现有的工作, 我们首先以精细微的方式管理模型数据, 将这些数据组织成记忆库, 并在混杂的记忆空间中动态地分配这些数据。 由在暖化的循环中收集的运行时间记忆统计, 使块在混杂的记忆中高效地组织起来, 产生较低的 CPU- GPU数据传输量。 与Zero Redence Oppimer、 Patrick Star Seral size to 多个 GPPPU, 使用数据平行的存储器, 相比, 标准要求更低, 以及更高效的带宽度利用。 。 系统可以在更大模型上用更多的模型上用更多的模型和GTRALTA 。 。 在大型的模型上, 一个大型的模型和大型的模型上培训中进行一个大型的模型和大型的模型, 。