The task of predicting missing entries of a matrix, from a subset of known entries, is known as \textit{matrix completion}. In today's data-driven world, data completion is essential whether it is the main goal or a pre-processing step. Structured matrix completion includes any setting in which data is not missing uniformly at random. In recent work, a modification to the standard nuclear norm minimization (NNM) for matrix completion has been developed to take into account \emph{sparsity-based} structure in the missing entries. This notion of structure is motivated in many settings including recommender systems, where the probability that an entry is observed depends on the value of the entry. We propose adjusting an Iteratively Reweighted Least Squares (IRLS) algorithm for low-rank matrix completion to take into account sparsity-based structure in the missing entries. We also present an iterative gradient-projection-based implementation of the algorithm that can handle large-scale matrices. Finally, we present a robust array of numerical experiments on matrices of varying sizes, ranks, and level of structure. We show that our proposed method is comparable with the adjusted NNM on small-sized matrices, and often outperforms the IRLS algorithm in structured settings on matrices up to size $1000 \times 1000$.


翻译:从已知条目子集中预测矩阵缺失条目的任务被称为 \ textit{matrix 完成} 。 在今天的数据驱动世界中,无论是主要目标还是预处理步骤,数据完成至关重要。 结构矩阵完成包括数据并非完全随机缺失的任何设置。 在最近的工作中, 已经对标准核规范最小化( NNM ) 进行修改, 以便完成矩阵, 以考虑到缺失条目中的基于质量的算法结构。 这种结构概念在包括推荐者系统在内的许多环境中都有动因, 其中观察到一个条目的概率取决于条目的价值。 我们建议对低位矩阵完成率调整一个自动再加权最小广场(IRLS)的算法, 以考虑到缺失条目中基于偏差的结构结构。 我们还提出了一个基于反复的梯度预测, 执行能够处理大型矩阵的算法。 最后, 我们展示了对不同大小、 级别和结构层次的矩阵进行强有力的数字实验。 我们表明,我们拟议的方法在10000 IMIS 上结构矩阵中, 通常与10000 IMIS 结构矩阵中, 的NNNNM 级比小。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月5日
Arxiv
0+阅读 · 2021年7月5日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员