Matrix completion, the problem of completing missing entries in a data matrix with low dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor completion is the tensor analog, that attempts to impute missing tensor entries from similar low-rank type assumptions. In this paper, we study the tensor completion problem when the sampling pattern is deterministic and possibly non-uniform. We first propose an efficient weighted HOSVD algorithm for recovery of the underlying low-rank tensor from noisy observations and then derive the error bounds under a properly weighted metric. Additionally, the efficiency and accuracy of our algorithm are both tested using synthetic and real datasets in numerical simulations.


翻译:矩阵完成后,在低维结构的数据矩阵(如等级)中完成缺失条目的问题,已经看到许多富有成效的方法和分析。Tensor的完成是模拟的,试图从类似的低级假设中估算缺失的光度条目。在本文中,当抽样模式具有确定性且可能不统一时,我们研究了单度完成问题。我们首先提出了一个高效的加权HOSVD算法,以便从噪音的观测中恢复底层的低级传感器,然后在适当加权的衡量标准下得出错误界限。此外,我们算法的效率和准确性在数字模拟中使用合成和真实数据集进行测试。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
基于Numpy实现神经网络:反向传播
论智
5+阅读 · 2018年3月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
基于Numpy实现神经网络:反向传播
论智
5+阅读 · 2018年3月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员