We present a new probabilistic model to address semi-nonnegative matrix factorization (SNMF), called Skellam-SNMF. It is a hierarchical generative model consisting of prior components, Skellam-distributed hidden variables and observed data. Two inference algorithms are derived: Expectation-Maximization (EM) algorithm for maximum \emph{a posteriori} estimation and Variational Bayes EM (VBEM) for full Bayesian inference, including the estimation of parameters prior distribution. From this Skellam-based model, we also introduce a new divergence $\mathcal{D}$ between a real-valued target data $x$ and two nonnegative parameters $\lambda_{0}$ and $\lambda_{1}$ such that $\mathcal{D}\left(x\mid\lambda_{0},\lambda_{1}\right)=0\Leftrightarrow x=\lambda_{0}-\lambda_{1}$, which is a generalization of the Kullback-Leibler (KL) divergence. Finally, we conduct experimental studies on those new algorithms in order to understand their behavior and prove that they can outperform the classic SNMF approach on real data in a task of automatic clustering.
翻译:我们提出了一个新的概率模型(SNMF), 叫做 Skellam- SNMF, 以解决半共性矩阵因子化( SNMF), 称为 Skellam- SNMF 。 这是一个等级基因模型, 由先前组件、 Skellam 分布的隐藏变量和观察到的数据组成。 得出了两种推论算法: 最大 \ emph{ a posoriori} 估计值的预期- 最大质量算法( EM) 和全巴伊西语的变异性 Bayes EM (VBEM), 包括估算先前分布的参数。 在基于 Skellamm 的模型中, 我们还引入了一个新的差异 $\ mathal{D} 和 两个非负值参数 $\\\\\ lambda} $\ 和 $\ lambda1} 。 这样的推算法可以最终理解 Kurback- trackalal 数据在 Krow- transalalal 中进行常规分析。