Molecular representation learning plays a crucial role in AI-assisted drug discovery research. Encoding 3D molecular structures through Euclidean neural networks has become the prevailing method in the geometric deep learning community. However, the equivariance constraints and message passing in Euclidean space may limit the network expressive power. In this work, we propose a Harmonic Molecular Representation learning (HMR) framework, which represents a molecule using the Laplace-Beltrami eigenfunctions of its molecular surface. HMR offers a multi-resolution representation of molecular geometric and chemical features on 2D Riemannian manifold. We also introduce a harmonic message passing method to realize efficient spectral message passing over the surface manifold for better molecular encoding. Our proposed method shows comparable predictive power to current models in small molecule property prediction, and outperforms the state-of-the-art deep learning models for ligand-binding protein pocket classification and the rigid protein docking challenge, demonstrating its versatility in molecular representation learning.
翻译:分子表示学习在AI辅助药物研发研究中发挥着至关重要的作用。通过欧几里得神经网络对三维分子结构进行编码已经成为几何深度学习社区中的主流方法。然而,欧几里得空间中的等变性约束和信息传递可能会限制网络的表达能力。在这项工作中,我们提出了一种谐波分子表示学习(HMR)框架,它使用分子表面的Laplace-Beltrami特征函数来表示分子。HMR提供了关于2D黎曼流形上分子几何和化学特征的多分辨率表示。我们还介绍了一种谐波消息传递方法,以实现高效的谱消息传递,并且能更好地实现分子编码。我们提出的方法在小分子性质预测方面展现了与当前模型相当的预测能力,并且在配体结合蛋白质口袋分类及刚性蛋白质对接挑战中均优于最先进的深度学习模型,展示了它在分子表示学习方面的多功能性。